
Automatic Carbon Offsetting

Noel Strahm

Sep 29, 2021

CONTENTS

1 About 3

2 Support 5

3 Contents: 7
3.1 Step 1: Creating SMTP account . 7
3.2 Step 2: Importing Modules . 7
3.3 Step 3: Embedding the function . 8
3.4 Step 4: Adding additional code . 11
3.5 Step 5: Calling the function . 12
3.6 Examples . 14

i

ii

Automatic Carbon Offsetting

CONTENTS 1

Automatic Carbon Offsetting

2 CONTENTS

CHAPTER

ONE

ABOUT

Researchers in the environmental social sciences, broadly construed, are increasingly studying behavior in paradigms
with actual environmental consequences. While studying people’s willingness to invest in environmental public goods,
many experimentalists rely on emission certificate markets to purchase and retire certificates to limit the caps in cap-
and-trade regulated markets. Thereby, experimental decisions trigger actual environmental consequences.

Our software-module helps researchers using oTree to automate the process of purchasing and retiring emission cer-
tificates in experiments. When an experiment is finished, researchers receive an email and are directed to a customized
donation form of Compensators.org, a platform facilitating the purchase and retirement of certificates. The tool helps
researchers to purchase emission certificates with minimal effort, thereby reducing the entry cost for conducting exper-
iments with environmental consequences.

This website provides simple step by step instructions that show researchers how to integrate the software module in
their oTree projects.

3

https://otree.readthedocs.io
https://www.compensators.org/

Automatic Carbon Offsetting

4 Chapter 1. About

CHAPTER

TWO

SUPPORT

For help, please contact noel.strahm@iop.unibe.ch

5

mailto:noel.strahm@iop.unibe.ch

Automatic Carbon Offsetting

6 Chapter 2. Support

CHAPTER

THREE

CONTENTS:

3.1 Step 1: Creating SMTP account

The Simple Mail Transfer Protocol (SMTP) is an internet standard communication protocol that is used to send email
over the internet. The software module requires a valid SMTP account, so that an email with all necessary information
including the link to purchase the carbon-emission certificate can be sent after the experiment has finished. There is a
multitude of SMTP service providers to choose from. Various service providers offer a free plan which is more than
enough for the purposes of the software module.

Possible service providers with a free plan are Mailjet or SendinBlue. We used Mailjet because no credit card is needed,
the free plan has no expiring date and it’s possible to send up 200 emails a day.

3.2 Step 2: Importing Modules

In order to integrate the software module in your oTree project the following three modules have to be imported at the
top of the models.py file of your oTree app.

• smtblib: Used to send the automated email.

• requests: Used to obtain the current CO2 price.

• traceback: Used for error handling purposes.

The top of your models.py file should look like this:

from otree.api import (
models,
widgets,
BaseConstants,
BaseSubsession,
BaseGroup,
BasePlayer,
Currency as c,
currency_range,

)
import smtplib
import requests
import traceback
#import everything else you need here

7

https://www.mailjet.com/pricing/
https://www.sendinblue.com/pricing/

Automatic Carbon Offsetting

Note: Source Code: All source code described on this website can simply be copied into your oTree project from the
code block at the bottom of this section.

3.3 Step 3: Embedding the function

Next, the send_payment_mail() function has to be embedded in the Subsession class of the models.py file. The
following section explains how the function works, how it can be modified and how it has to be integrated in the
Subsession class of your oTree app.

3.3.1 Initial set up

First, enter your SMTP account credentials in the #CONSTANTS section of the function.

• MAIL_USER & MAIL_PASS: There are two ways to enter your SMTP account info. Either enter a API key
and secret key combination or enter your SMTP account email and your password.

• MAIL_SERVER: Enter the the name of the SMTP server of your provider. You can find the server’s name in
the SMTP configuration settings of your SMTP account. The Mailjet server is called “in-v3.mailjet.com”, the
SendinBlue server is called “smtp-relay.sendinblue.com”.

• MAIL_SENDER: Enter your SMTP validated email address here. It is possible to enter the same email address
for MAIL_USER and MAIL_SENDER.

• MAIL_PORT: Enter the port through which a connection to the server is established. Various ports are possible,
click here for an overview. We found that port 465 works best for us. If you have troubles with port 465, try port
587.

• DONATION_MINIMUM: The minimal possible donation to make is 1 cent. This value must not be changed.

3.3.2 Parameters

The function requires the following six parameters:

• self: self is required by all functions in the oTree framework. It has no explicit use within this particular
function.

• weight_to_donate: A float value used to pass the amount of carbon emission that is saved by the experimental
participants.

• unit: A string value that defines the unit of the saved carbon emission. The following values are accepted:
["mg", "g", "kg", "t", "oz", "lbs", "st"]

• experiment_name: A string value that specifies the name of the experiment (e.g. “Carbon Emission Task”).

• payment_e_mail_name: A string that specifies the name of the person or team that receives the mail.

• payment_e_mail_to: A list containing the mail addresses of all recipients . If the mail is only to be sent to one
address then a single string can be passed to the function.

8 Chapter 3. Contents:

https://kinsta.com/blog/smtp-port/

Automatic Carbon Offsetting

3.3.3 Sequence of events

1. The weight_to_donate value is converted to metric tons. The conversion is based on the unit value.

2. The current CO2 price per ton for emission certificates is fetched from a price endpoint that is provided by
Compensators.

3. The price of the carbon-emission certificate is calculated.

4. The contents of the email are defined.

• The mail subject includes the experiment_name parameter.

• The mail body includes the payment_e_mail_name parameter as an initial greeting. Furthermore, the
body includes the total weight of carbon-emission saved, the current price per ton for carbon-emission
certificates, as well as the link to Compensators donation form with the correct price to make the carbon-
emission certificate purchase. These contents can be changed at will.

5. A connection to the SMTP server is established and the email is sent to all recipients specified in the
payment_e_mail_to list.

3.3.4 Add the function to your Subsession class

Simply insert the function into the Subsession Class of your models.py file. The Subsession class should look something
like this:

class Subsession(BaseSubsession):

#-------------------------
#ALL YOUR OTHER CODE HERE
#-------------------------

def send_payment_mail(self,
weight_to_donate: float,
unit: str = "t",
experiment_name: str = "Experiment Name",
payment_e_mail_name: str = "John Doe",
payment_e_mail_to: list = ["john.doe@gmail.com"]):

#CONSTANTS:
MAIL_USER = "API key or SMTP account email"
MAIL_PASS = "API secret key or SMTP account password"
MAIL_SERVER = "SMTP Mail server here e.g.: `in-v3.mailjet.com`"
MAIL_SENDER = "validated.email@gmail.com"
MAIL_PORT = 465
DONATION_MINIMUM = 1

#UNIT CHECK:
unit_list = ["mg", "g", "kg", "t", "oz", "lbs", "st"]
if unit not in unit_list:

raise Exception("unit parameter ", unit, "not recognised. Unit has to be in
→˓", unit_list)

#CONVERT UNIT TO METRIC TONS:
if unit == "mg":

(continues on next page)

3.3. Step 3: Embedding the function 9

https://www.compensators.org/
https://www.spendenformular-direkt.org/forms/6944d11a-60d9-48a2-803f-b4b0c7797cb9

Automatic Carbon Offsetting

(continued from previous page)

weight_in_tons = weight_to_donate / 1000000000
if unit == "g":

weight_in_tons = weight_to_donate / 1000000
if unit == "kg":

weight_in_tons = weight_to_donate / 1000
if unit == "t":

weight_in_tons = weight_to_donate
if unit == "oz":

weight_in_tons = weight_to_donate / 35273.96198069
if unit == "lbs":

weight_in_tons = weight_to_donate / 2204.62262185
if unit == "st":

weight_in_tons = weight_to_donate / 157.47304442

#GETTING THE CURRENT CO2 PRICE:
price = 0
try:

price = requests.get("http://compensate.compensators.org/price.php").json()
if 'price_per_ton' not in price:

raise Exception("Price not found in data")
price_per_ton = float(price['price_per_ton'])

except:
pass

donation_in_cents = weight_in_tons * price_per_ton

CHECK DONATION MINIMUM
if donation_in_cents < DONATION_MINIMUM:

print("The donation is less than 1 cent, therefore too small. No Mail was␣
→˓sent.")

#SENDING THE PAYMENT MAIL
else:

#Define the body of the mail
body = f"""Hello {payment_e_mail_name},

The participants in your experiment: "{experiment_name}" donated {weight_to_donate:.3f}
→˓{unit} of CO2 Emission.
This equals to {weight_in_tons:.3f} tons of CO2. At the current price of {(price_per_ton␣
→˓/ 100):.2f} € per ton this sums up to a total donation of {(donation_in_cents / 100):.
→˓2f} €.

To authorize the payment, please click here:
https://www.spendenformular-direkt.org/forms/6944d11a-60d9-48a2-803f-b4b0c7797cb9?
→˓default_amount_1_in_cents={donation_in_cents}

Best Regards
The Automated Donation system :)

"""

#DEFINE MAIL SUBJECT ADD MAIL BODY:
email_text = f"Subject: [{experiment_name}] Please confirm the donation for␣

→˓the experiment\n\n{body}" (continues on next page)

10 Chapter 3. Contents:

Automatic Carbon Offsetting

(continued from previous page)

try:
#CONNECT TO THE SMTP SERVER:
server = smtplib.SMTP_SSL(MAIL_SERVER, MAIL_PORT)

#LOGIN TO THE SMTP SERVER
server.login(MAIL_USER, MAIL_PASS)

#SEND THE EMAIL
server.sendmail(MAIL_SENDER, payment_e_mail_to, email_text.encode('utf8',

→˓ 'ignore'))
server.close()
print("Your mail has been sent successfully")

except:
print("Unable to send mail")
traceback.print_exc()

In order to call the function some additional set up in your code is needed.

Note: Source Code: All source code described on this website can simply be copied into your oTree project from the
code block at the bottom of this section.

3.4 Step 4: Adding additional code

Some additional code is needed to ensure that the email is sent at the right time, containing the correct data. The easiest
way to do this, is to send the email (e.g. calling the function) after all participants have finished the experiment and the
correct amount of saved carbon emission has been calculated.

In order to monitor the status of each participant and make sure that all players have finished the experiment, it is
recommended to implement the following fields and functions in your models.py file.

3.4.1 Player is finished

You should add a Boolean field is_finished in the Player class, that states whether or not a player has finished the
experiment. The initial value of this field should be set to False, and turn True once the player has completed the
experiment. Add the following code to your Player class:

class Player(BasePlayer):
#-------------------------
#ALL YOUR OTHER CODE HERE
#-------------------------

is_finished = models.BooleanField(initial=False)

3.4. Step 4: Adding additional code 11

Automatic Carbon Offsetting

3.4.2 Subsession is finished

Secondly, a Boolean field all_players_finished should be added to your Subsession class that states whether
or not all players in the Subsession have finished the experiment. This field has to be initialised as False and
be set to True once every player has finished the experiment. In addition to this field a corresponding function
set_all_players_finishedmust be added in the Subsession class. This function counts the total number of players
that have finished the experiment and sets the all_players_finished field to True once all players have finished.
Add the following code to your Subsession class:

class Subsession(BaseSubsession):
#--
#ALL YOUR OTHER CODE HERE
#def send_payment_mail(...) should be here too
#--

all_players_finished = models.BooleanField(initial=False)

def set_all_players_finished(self):
sum_finished = 0
for p in self.get_players():

if p.is_finished:
sum_finished += 1

if sum_finished == self.session.num_participants:
self.all_players_finished = True

After this code is implemented in your models.py file, the function can be called at the correct time, including the
correct data.

Note: Source Code: All source code described on this website can simply be copied into your oTree project from the
code block at the bottom of this section.

3.5 Step 5: Calling the function

This is the last step of integrating the software-module in your oTree project. You need to add the following things in
your pages.py file.

3.5.1 Adding Timeouts

The email should be sent once all players have finished the experiment. Since it’s impossible to guarantee that every
single player finishes the experiment you have to account for players that have dropped out and might not finish the ex-
periment on their own. One way to do this is to manually force a timeout by clicking the “Advance slowest participants”
button in oTree’s admin interface. Like this:

12 Chapter 3. Contents:

Automatic Carbon Offsetting

However, this can also be done more elegantly by adding a Timeout to every single page of your experiment. By adding
a timeout to every Page class in your pages.py file you don’t have to manually advance the players and you can still
make sure that every player finishes the experiment. Add the following code to all your page classes:

class Page1(Page):
#-------------------------
#ALL YOUR OTHER CODE HERE
#-------------------------

timeout_seconds = XX # add amount of seconds until timeout happens

3.5.2 Before Next Page

Lastly, the following lines have to be added to the last page of your experiment. All code within the
before_next_page() function is executed once the player finishes the last page of your experiment. Click here
for additional information. The code below does the following:

1. Once a player finishes the experiment the is_finished field of the player is set to True

2. The set_all_players_finished() function checks if every player has finished the experiment.

3. Once the last player finishes and therefore all players have finished the experiment, the send_payment_mail()
function is called and the email is sent.

This is an example of possible parameters for the function:

Mail parameters:

• The sum_saved_emission field is the total weight of CO2 emission that was saved by participants. Add
your own variable here.

• The unit of the weight is lbs.

• The name of the experiment is Carbon Emission Task.

• The name of the recipient is John Doe.

• the recipient’s email address is john.doe@cet.com. (Multiple addresses have to be specified in a list e.g.
[”john.doe@cet.com”, “jane.doe@cet.com”].

3.5. Step 5: Calling the function 13

https://otree.readthedocs.io/en/latest/pages.html
mailto:john.doe@cet.com
mailto:john.doe@cet.com
mailto:jane.doe@cet.com

Automatic Carbon Offsetting

By adding the following code to the last page of your experiment, you successfully integrated the tool for automatic
carbon offsetting in your oTree project.

class LAST_PAGE(Page):
#-------------------------
#ALL YOUR OTHER CODE HERE
#-------------------------

def before_next_page(self):
#Is Finished fields and functions
self.player.is_finished = True
self.subsession.set_all_players_finished()

All finished check and send mail
if self.subsession.all_players_finished:

self.subsession.send_payment_mail(self.subsession.sum_saved_emission,
"lbs",
"Carbon Emission Task",
"John Doe",
"john.doe@cet.com")

3.6 Examples

This is an example of a generated email:

The link directs you to the donation form, where the carbon-emission certificate purchase can be made. The donation
form looks like this:

14 Chapter 3. Contents:

Automatic Carbon Offsetting

3.6. Examples 15

	About
	Support
	Contents:
	Step 1: Creating SMTP account
	Step 2: Importing Modules
	Step 3: Embedding the function
	Initial set up
	Parameters
	Sequence of events
	Add the function to your Subsession class

	Step 4: Adding additional code
	Player is finished
	Subsession is finished

	Step 5: Calling the function
	Adding Timeouts
	Before Next Page

	Examples

