

Automatic Carbon Offsetting

[image: _images/logo_aco.jpg]

About

Researchers in the environmental social sciences, broadly construed, are increasingly studying behavior
in paradigms with actual environmental consequences. While studying people’s willingness to invest in
environmental public goods, many experimentalists rely on emission certificate markets to purchase and
retire certificates to limit the caps in cap-and-trade regulated markets. Thereby, experimental decisions
trigger actual environmental consequences.

Our software-module helps researchers using oTree [https://otree.readthedocs.io] to automate
the process of purchasing and retiring emission certificates in experiments. When an experiment
is finished, researchers receive an email and are directed to a customized donation form
of Compensators.org [https://www.compensators.org/], a platform facilitating the purchase and
retirement of certificates. The tool helps researchers to purchase emission certificates with
minimal effort, thereby reducing the entry cost for conducting experiments with environmental
consequences.

This website provides simple step by step instructions that show researchers how to integrate the
software module in their oTree projects.

Support

For help, please contact noel.strahm@iop.unibe.ch

Contents:

	Step 1: Creating SMTP account

	Step 2: Importing Modules

	Step 3: Embedding the function
	Initial set up

	Parameters

	Sequence of events

	Add the function to your Subsession class

	Step 4: Adding additional code
	Player is finished

	Subsession is finished

	Step 5: Calling the function
	Adding Timeouts

	Before Next Page

	Examples

Step 1: Creating SMTP account

The Simple Mail Transfer Protocol (SMTP) is an internet standard communication protocol that is used to send
email over the internet. The software module requires a valid SMTP account, so that an email with all
necessary information including the link to purchase the carbon-emission certificate can be sent
after the experiment has finished. There is a multitude of SMTP service providers to choose from. Various
service providers offer a free plan which is more than enough for the purposes of the software module.

Possible service providers with a free plan are Mailjet [https://www.mailjet.com/pricing/] or
SendinBlue [https://www.sendinblue.com/pricing/]. We used Mailjet because no
credit card is needed, the free plan has no expiring date and it’s possible to send up 200 emails a day.

Step 2: Importing Modules

In order to integrate the software module in your oTree project the following three
modules have to be imported at the top of the models.py file of your oTree app.

	smtblib: Used to send the automated email.

	requests: Used to obtain the current CO2 price.

	traceback: Used for error handling purposes.

The top of your models.py file should look like this:

from otree.api import (
 models,
 widgets,
 BaseConstants,
 BaseSubsession,
 BaseGroup,
 BasePlayer,
 Currency as c,
 currency_range,
)
import smtplib
import requests
import traceback
#import everything else you need here

Note

Source Code: All source code described on this website can simply be copied into your oTree project
from the code block at the bottom of this section.

Step 3: Embedding the function

Next, the send_payment_mail() function has to be embedded in the Subsession class of the models.py file.
The following section explains how the function works, how it can be modified and how it has to be integrated
in the Subsession class of your oTree app.

Initial set up

First, enter your SMTP account credentials in the #CONSTANTS section of the function.

	MAIL_USER & MAIL_PASS: There are two ways to enter your SMTP account info. Either enter a API key and
secret key combination or enter your SMTP account email and your password.

	MAIL_SERVER: Enter the the name of the SMTP server of your provider. You can find the server’s
name in the SMTP configuration settings of your SMTP account. The Mailjet server is called “in-v3.mailjet.com”,
the SendinBlue server is called “smtp-relay.sendinblue.com”.

	MAIL_SENDER: Enter your SMTP validated email address here. It is possible to enter the same email address
for MAIL_USER and MAIL_SENDER.

	MAIL_PORT: Enter the port through which a connection to the server is established. Various ports are
possible, click here [https://kinsta.com/blog/smtp-port/] for an overview. We found that port 465 works best for
us. If you have troubles with port 465, try port 587.

	DONATION_MINIMUM: The minimal possible donation to make is 1 cent. This value must not be changed.

Parameters

The function requires the following six parameters:

	self: self is required by all functions in the oTree framework. It has no explicit use within this particular function.

	weight_to_donate: A float value used to pass the amount of carbon emission that is saved by the experimental participants.

	unit: A string value that defines the unit of the saved carbon emission. The following values are accepted: ["mg", "g", "kg", "t", "oz", "lbs", "st"]

	experiment_name: A string value that specifies the name of the experiment (e.g. “Carbon Emission Task”).

	payment_e_mail_name: A string that specifies the name of the person or team that receives the mail.

	payment_e_mail_to: A list containing the mail addresses of all recipients . If the mail is only to be sent to one address then a single string can be passed to the function.

Sequence of events

	The weight_to_donate value is converted to metric tons. The conversion is based on the unit value.

	The current CO2 price per ton for emission certificates is fetched from a price endpoint that is provided by
Compensators [https://www.compensators.org/].

	The price of the carbon-emission certificate is calculated.

	The contents of the email are defined.

	The mail subject includes the experiment_name parameter.

	The mail body includes the payment_e_mail_name parameter as an initial greeting. Furthermore,
the body includes the total weight of carbon-emission saved, the current price per ton for
carbon-emission certificates, as well as the link to Compensators
donation form [https://www.spendenformular-direkt.org/forms/6944d11a-60d9-48a2-803f-b4b0c7797cb9]
with the correct price to make the carbon-emission certificate purchase. These contents can be
changed at will.

	A connection to the SMTP server is established and the email is sent to all recipients specified in
the payment_e_mail_to list.

Add the function to your Subsession class

Simply insert the function into the Subsession Class of your models.py file.
The Subsession class should look something like this:

class Subsession(BaseSubsession):

 #-------------------------
 #ALL YOUR OTHER CODE HERE
 #-------------------------

 def send_payment_mail(self,
 weight_to_donate: float,
 unit: str = "t",
 experiment_name: str = "Experiment Name",
 payment_e_mail_name: str = "John Doe",
 payment_e_mail_to: list = ["john.doe@gmail.com"]):

 #CONSTANTS:
 MAIL_USER = "API key or SMTP account email"
 MAIL_PASS = "API secret key or SMTP account password"
 MAIL_SERVER = "SMTP Mail server here e.g.: `in-v3.mailjet.com`"
 MAIL_SENDER = "validated.email@gmail.com"
 MAIL_PORT = 465
 DONATION_MINIMUM = 1

 #UNIT CHECK:
 unit_list = ["mg", "g", "kg", "t", "oz", "lbs", "st"]
 if unit not in unit_list:
 raise Exception("unit parameter ", unit, "not recognised. Unit has to be in ", unit_list)

 #CONVERT UNIT TO METRIC TONS:
 if unit == "mg":
 weight_in_tons = weight_to_donate / 1000000000
 if unit == "g":
 weight_in_tons = weight_to_donate / 1000000
 if unit == "kg":
 weight_in_tons = weight_to_donate / 1000
 if unit == "t":
 weight_in_tons = weight_to_donate
 if unit == "oz":
 weight_in_tons = weight_to_donate / 35273.96198069
 if unit == "lbs":
 weight_in_tons = weight_to_donate / 2204.62262185
 if unit == "st":
 weight_in_tons = weight_to_donate / 157.47304442

 #GETTING THE CURRENT CO2 PRICE:
 price = 0
 try:
 price = requests.get("http://compensate.compensators.org/price.php").json()
 if 'price_per_ton' not in price:
 raise Exception("Price not found in data")
 price_per_ton = float(price['price_per_ton'])
 except:
 pass
 donation_in_cents = weight_in_tons * price_per_ton

 # CHECK DONATION MINIMUM
 if donation_in_cents < DONATION_MINIMUM:
 print("The donation is less than 1 cent, therefore too small. No Mail was sent.")

 #SENDING THE PAYMENT MAIL
 else:

 #Define the body of the mail
 body = f"""Hello {payment_e_mail_name},

The participants in your experiment: "{experiment_name}" donated {weight_to_donate:.3f} {unit} of CO2 Emission.
This equals to {weight_in_tons:.3f} tons of CO2. At the current price of {(price_per_ton / 100):.2f} € per ton this sums up to a total donation of {(donation_in_cents / 100):.2f} €.

To authorize the payment, please click here:
https://www.spendenformular-direkt.org/forms/6944d11a-60d9-48a2-803f-b4b0c7797cb9?default_amount_1_in_cents={donation_in_cents}

Best Regards
The Automated Donation system :)
 """

 #DEFINE MAIL SUBJECT ADD MAIL BODY:
 email_text = f"Subject: [{experiment_name}] Please confirm the donation for the experiment\n\n{body}"

 try:
 #CONNECT TO THE SMTP SERVER:
 server = smtplib.SMTP_SSL(MAIL_SERVER, MAIL_PORT)

 #LOGIN TO THE SMTP SERVER
 server.login(MAIL_USER, MAIL_PASS)

 #SEND THE EMAIL
 server.sendmail(MAIL_SENDER, payment_e_mail_to, email_text.encode('utf8', 'ignore'))
 server.close()
 print("Your mail has been sent successfully")

 except:
 print("Unable to send mail")
 traceback.print_exc()

In order to call the function some additional set up in your code is needed.

Note

Source Code: All source code described on this website can simply be copied into your oTree project
from the code block at the bottom of this section.

Step 4: Adding additional code

Some additional code is needed to ensure that the email is sent at the right time, containing
the correct data. The easiest way to do this, is to send the email (e.g. calling the function) after
all participants have finished the experiment and the correct amount of saved carbon emission has
been calculated.

In order to monitor the status of each participant and make sure that all players have finished the
experiment, it is recommended to implement the following fields and functions in your models.py file.

Player is finished

You should add a Boolean field is_finished in the Player class, that states whether or not
a player has finished the experiment. The initial value of this field should be set to False,
and turn True once the player has completed the experiment. Add the following code to your Player class:

class Player(BasePlayer):
 #-------------------------
 #ALL YOUR OTHER CODE HERE
 #-------------------------

 is_finished = models.BooleanField(initial=False)

Subsession is finished

Secondly, a Boolean field all_players_finished should be added to your Subsession class that states whether
or not all players in the Subsession have finished the experiment. This field has to be initialised as
False and be set to True once every player has finished the experiment. In addition to this field
a corresponding function set_all_players_finished must be added in the Subsession class.
This function counts the total number of players that have finished the experiment and sets the
all_players_finished field to True once all players have finished. Add the following code to
your Subsession class:

class Subsession(BaseSubsession):
 #--
 #ALL YOUR OTHER CODE HERE
 #def send_payment_mail(...) should be here too
 #--

 all_players_finished = models.BooleanField(initial=False)

 def set_all_players_finished(self):
 sum_finished = 0
 for p in self.get_players():
 if p.is_finished:
 sum_finished += 1

 if sum_finished == self.session.num_participants:
 self.all_players_finished = True

After this code is implemented in your models.py file, the function can be called at the correct time,
including the correct data.

Note

Source Code: All source code described on this website can simply be copied into your oTree project
from the code block at the bottom of this section.

Step 5: Calling the function

This is the last step of integrating the software-module in your oTree project.
You need to add the following things in your pages.py file.

Adding Timeouts

The email should be sent once all players have finished the experiment. Since it’s impossible
to guarantee that every single player finishes the experiment you have to account for players that
have dropped out and might not finish the experiment on their own. One way to do this is to manually
force a timeout by clicking the “Advance slowest participants” button in oTree’s admin interface.
Like this:

[image: _images/admin.jpg]
However, this can also be done more elegantly by adding a Timeout to every single page of your
experiment. By adding a timeout to every Page class in your pages.py file you don’t have to manually
advance the players and you can still make sure that every player finishes the experiment.
Add the following code to all your page classes:

class Page1(Page):
 #-------------------------
 #ALL YOUR OTHER CODE HERE
 #-------------------------

 timeout_seconds = XX # add amount of seconds until timeout happens

Before Next Page

Lastly, the following lines have to be added to the last page of your experiment. All code within
the before_next_page() function is executed once the player finishes the last page of your
experiment. Click here [https://otree.readthedocs.io/en/latest/pages.html] for additional
information. The code below does the following:

	Once a player finishes the experiment the is_finished field of the player is set to True

	The set_all_players_finished() function checks if every player has finished the experiment.

	Once the last player finishes and therefore all players have finished the experiment,
the send_payment_mail() function is called and the email is sent.

This is an example of possible parameters for the function:

	Mail parameters:
	
	The sum_saved_emission field is the total weight of CO2 emission that was saved by participants.
Add your own variable here.

	The unit of the weight is lbs.

	The name of the experiment is Carbon Emission Task.

	The name of the recipient is John Doe.

	the recipient’s email address is john.doe@cet.com. (Multiple addresses have to be specified in a list
e.g. [”john.doe@cet.com”, “jane.doe@cet.com”].

By adding the following code to the last page of your experiment, you successfully integrated the tool
for automatic carbon offsetting in your oTree project.

class LAST_PAGE(Page):
 #-------------------------
 #ALL YOUR OTHER CODE HERE
 #-------------------------

 def before_next_page(self):
 #Is Finished fields and functions
 self.player.is_finished = True
 self.subsession.set_all_players_finished()

 # All finished check and send mail
 if self.subsession.all_players_finished:
 self.subsession.send_payment_mail(self.subsession.sum_saved_emission,
 "lbs",
 "Carbon Emission Task",
 "John Doe",
 "john.doe@cet.com")

Examples

This is an example of a generated email:

[image: _images/email_update.jpg]
The link directs you to the donation form, where the carbon-emission certificate purchase can be made.
The donation form looks like this:

[image: _images/spendeformular_update.jpg]

Index

 nav.xhtml

 Table of Contents

 		
 Automatic Carbon Offsetting

 		
 Step 1: Creating SMTP account

 		
 Step 2: Importing Modules

 		
 Step 3: Embedding the function

 		
 Initial set up

 		
 Parameters

 		
 Sequence of events

 		
 Add the function to your Subsession class

 		
 Step 4: Adding additional code

 		
 Player is finished

 		
 Subsession is finished

 		
 Step 5: Calling the function

 		
 Adding Timeouts

 		
 Before Next Page

 		
 Examples

_static/admin.jpg
CET Light Version: session 1cr2bh7m (demo)

CNew links g8 Monitor Data $ payments s Description

Code Label Progress App Round Page name
P1 5817nh76 1/240 cet light 1 Instruction_page
P2 w7qs842| 1/240 cet_light 1 Instruction_page
P3 kkvqtabq 1/240 cet_light 1 Instruction_page

3/3 participants started.

Waiting for

_images/logo_aco.jpg
ing

..L
=
@
%)
P
=
o
=
o
!
—_
()
(&)
=

Automat

_static/spendeformular_update.jpg
Deine Spende zur Kompensation

Betrag

Spendenintervall auswahlen

e

Ya-jéhrich

jahriich

Personliche Angaben

anderer Betrag

Als Firma spenden

Vorname

Nachname

E-Mail

StraBe, Hausnummer

PLZ

‘ Stadt

Deutschland

SEPA Kreditkarte PayPal

IBAN

Ich erméchtige Compensators e\V. und Stripe, unseren Zahlungsdienstieister, Zahlungen von meinem Konto mittels Lastschrift einzuziehen. Zugleich weise ich mein Kreditinstitut n, die von Compensators e.V. auf mein Konto gezogenen Lastschriften einzuldsen. Ich kann innerhalb von acht Wochen,
beginnend mit dem Belastungsdatum, die Erstattung des belasteten Betrags verlangen. Es gelten dabei die mit meinem Kreditinstitut vereinbarten Bedingungen.

etzt 9,48 € spenden

e

_images/spendeformular_update.jpg
Deine Spende zur Kompensation

Betrag

Spendenintervall auswahlen

e

Ya-jéhrich

jahriich

Personliche Angaben

anderer Betrag

Als Firma spenden

Vorname

Nachname

E-Mail

StraBe, Hausnummer

PLZ

‘ Stadt

Deutschland

SEPA Kreditkarte PayPal

IBAN

Ich erméchtige Compensators e\V. und Stripe, unseren Zahlungsdienstieister, Zahlungen von meinem Konto mittels Lastschrift einzuziehen. Zugleich weise ich mein Kreditinstitut n, die von Compensators e.V. auf mein Konto gezogenen Lastschriften einzuldsen. Ich kann innerhalb von acht Wochen,
beginnend mit dem Belastungsdatum, die Erstattung des belasteten Betrags verlangen. Es gelten dabei die mit meinem Kreditinstitut vereinbarten Bedingungen.

etzt 9,48 € spenden

e

_static/file.png

_static/logo_aco.jpg
ing

..L
=
@
%)
P
=
o
=
o
!
—_
()
(&)
=

Automat

_static/email_update.jpg
[Carbon Emission Task] Please confirm the donation for the experiment

2

john.doe@cet.com S Replyall |v
Mon 8/02, 11:10 AM

Hello John Doe,

The participants in your experiment: “Carbon Emission Task" donated 503.750 Ibs of CO2 Emission.
This equals to 0.228 tons of CO2. At the current price of 41,52 € per ton this sums up to a total donation of 9.48 €.

To authorize the payment, please click here:
https://www.spendenformular-direkt.org/forms/6944d11a-60d9-48a2-803f-

Best Regards
The Automated Donation system)

_static/minus.png

_static/plus.png

_images/admin.jpg
CET Light Version: session 1cr2bh7m (demo)

CNew links g8 Monitor Data $ payments s Description

Code Label Progress App Round Page name
P1 5817nh76 1/240 cet light 1 Instruction_page
P2 w7qs842| 1/240 cet_light 1 Instruction_page
P3 kkvqtabq 1/240 cet_light 1 Instruction_page

3/3 participants started.

Waiting for

_images/email_update.jpg
[Carbon Emission Task] Please confirm the donation for the experiment

2

john.doe@cet.com S Replyall |v
Mon 8/02, 11:10 AM

Hello John Doe,

The participants in your experiment: “Carbon Emission Task" donated 503.750 Ibs of CO2 Emission.
This equals to 0.228 tons of CO2. At the current price of 41,52 € per ton this sums up to a total donation of 9.48 €.

To authorize the payment, please click here:
https://www.spendenformular-direkt.org/forms/6944d11a-60d9-48a2-803f-

Best Regards
The Automated Donation system)

